Monatshefte für Chemie Chemical Monthly Printed in Austria

# Synthesis and Antibacterial Activity of Some Substituted 3-(Aryl)and 3-(Heteroaryl)indoles

# Yusuf M. Al-Hiari<sup>1</sup>, Ali M. Qaisi<sup>1</sup>, Mustafa M. El-Abadelah<sup>2</sup>, and Wolfgang Voelter<sup>3,\*</sup>

<sup>1</sup> Faculty of Pharmacy, University of Jordan, Amman, Jordan

<sup>2</sup> Chemistry Department, Faculty of Science, University of Jordan, Amman, Jordan

<sup>3</sup> Abteilung für Physikalische Biochemie des Physiologisch-chemischen Instituts der Universität Tübingen, D-72076 Tübingen, Germany

Received May 12, 2005; accepted July 4, 2005 Published online January 20, 2006 © Springer-Verlag 2006

**Summary.** A synthesis of 3-(4-methoxycarbonyl-2,6-dinitrophenyl)indole, its 2,6-diamino analog, and 3-(2-amino-4-trifluoromethyl-6-nitrophenyl)indole is described. 4-(Trifluoromethyl)phenyl derivatives exhibit higher antibacterial potency than the former 4-(methoxycarbonyl)phenyl homologs, while 3-(4-trifluoromethyl-2-nitrophenyl)indole was the most active agent in the series, with MIC  $\approx 7 \,\mu g/cm^3$  against *E. coli* and *S. aureus*.

Keywords. 3-(Substituted)phenyl and heteroarylindoles; Antibacterial activity.

# Introduction

The indole nucleus occurs naturally in a large number of secondary metabolites from plant origin (indole alkaloids), some of which serve as therapeutically useful drugs, *e.g.* harmaline, vincristine, and resperine [1]. Indole medicinal products of fungus origin include ergotamine and semi-synthetic lysergic acid diethylamide (LSD). Also, a number of naturally occurring 3-(heteroaryl)indoles were characterized and shown to possess antimicrobial activity. Examples include 3-(2-thiazolyl)indole (1) (called camalexine, isolated from the leaves of *Camelina sativa/Cruciferae* [2]), and 3-(5-oxazolyl)indoles **2a** and **2b** (called pimprinines, isolated from *Streptomyces pimprina*) [3] (Formulae 1).

In search for new lead antibacterial agents, we thought it worthwhile to test the *in vitro* antibacterial activity of model 3-(heteroaryl)indoles (3, 4) and 3-(4-trifluoromethylphenyl)indoles (5-8) (Formulae 2). These compounds have previously been

<sup>\*</sup> Corresponding author. E-mail: wolfgang.voelter@uni-tuebingen.de



Formulae 1



utilized in the synthesis of various tetra- and pentacyclic heterocycles [4-8], and are prepared in this study for bioassay. For comparative study, **9** and 3-(4-methox-ycarbonylphenyl)indoles **10** and **11** were also prepared as outlined in Schemes 1 and 2. Herein, we also report on the antibacterial data of **3–11**. The synthesis procedures and properties of the new compounds **9–11** are detailed in the experimental part.

## **Results and Discussions**

#### Syntheses

3-(4-Trifluoromethyl-2,6-dinitrophenyl)indole (7) [7] underwent reduction of one nitro group with sodium polysulfide [9] to deliver the corresponding 3-(2-amino-4-trifluoromethyl-6-nitrophenyl)indole (9) (Scheme 1). 3-(4-Methoxycarbonyl-2,6-dinitrophenyl)indole (10) has been prepared *via* coupling of indolylzinc chloride (12) [2, 5, 10] with methyl 4-chloro-3,5-dinitrobenzoate (13). The copper(II) acetate/NaBH<sub>4</sub> system [11] was employed for the re-





duction of **10** to afford 3-(2,6-diamino-4-methoxycarbonylphenyl)indole (**11**) (Scheme 2).

The IR, MS, and NMR spectral data of **7**, **10**, and **11** are in accordance with the assigned structures and are given in the experimental part. Thus, their MS spectra display the correct  $M^+$  for which the measured HRMS data are in good agreement with the calculated values suggested by their molecular formulae. Assignments of the <sup>1</sup>H NMR signals to the different protons are straightforward, and <sup>13</sup>C signal assignments are based on DEPT and 2D (COSY, HMQC, HMBC) experiments, which showed correlations that helped in the assignments of the various carbons and hydrogens.

# Antimicrobial Activity

In vitro antibacterial screening results of **5–11** showed that **5** is the most active derivative with  $MIC \approx 7 \,\mu g/cm^3$  against *Escherichia coli* and *Staphylococcus aureus* (representatives of *Gram*-negative and *Gram*-positive bacteria classes, *cf*. Table 1). However, these compounds showed weak to moderate antifungal activity against *Candida albicans* (ATCC 10231) and *Asperigillus niger* (ATCC 16404).

| Compound                                   | Α    | Т    | 5   | 6    | 7    | 8    | 9    | 10   | 11    |
|--------------------------------------------|------|------|-----|------|------|------|------|------|-------|
| <i>Staphylococcus aureus</i><br>ATCC 6538p | 1.14 | 1.83 | 7.3 | 14.7 | 14.7 | 14.7 | >156 | >156 | >156  |
| Escherichia coli<br>ATCC 8739              | 2.34 | 1.83 | 7.3 | 29.3 | 29.3 | 58.6 | 29.3 | 58.6 | 117.2 |

**Table 1.** In vitro antibacterial activity (MIC values,  $\mu g/cm^3$ ) of different substituted 3-(trifluoromethyl)phenylindoles and of amoxycillin (A) and tetracycline (T) as reference agents

### Experimental

Melting points: Electrothermal melting temperature apparatus. <sup>1</sup>H and <sup>13</sup>C NMR spectra: Bruker DPX 300 instrument (300 MHz/75 MHz) at room temp, *TMS* as internal standard,  $\delta_{TMS} = 0.00$  ppm. Electron impact mass spectra were obtained using a Finnigan MAT TSQ-70 spectrometer at 70 eV at an ion source temperature of 200°C. IR spectra (KBr) were recorded on a Nicolet Impact-400 FT-IR spectro-photometer. 1-Chloro-4-trifluoromethyl-2-nitrobenzene, 2-chloro-4-trifluoromethyl-1,3-dinitrobenzene, 4-chloro-3,5-dinitrobenzoic acid, 2-chloro-3-nitrothiophene, 5-chloro-1,3-dimethyl pyrazole, and indole were purchased from Acros, and ZnCl<sub>2</sub> (1.0*M* in ether) and methylmagnesium iodide (3.0*M* in ether) from Aldrich. Solvents were purified and dried according to literature procedures. Micro-analyses were preformed at the Microanalytical Laboratory – Inorganic Chemistry Department, Tübingen University, Germany, and the results agreed with the calculated values within experimental errors.

3-(2-Thienyl) indole (3) [4], 3-(1,3-dimethyl-5-pyrazolyl) indole (4) [5], 3-(4-trifluoromethyl-phenyl) indoles (5, 6) [6] and (7, 8) [7] were prepared according to established procedures.

#### Pharmacological Tests

The minimal inhibitory concentrations (*MICs*) were determined by the conventional broth dilution method using the two serial dilution technique. The standardization of bacterial test suspension was carried out according to *McFarland* standard method as described by the National Committee for Clinical Laboratories Standard (NCCLS, 1993). Stock solutions of the test compounds were prepared using *DMSO*. Serial dilutions were prepared to obtain test concentrations ranging from  $156 \,\mu g/cm^3 - 0.3 \,\mu g/cm^3$ . Each tube was then inoculated with  $0.1 \,cm^3$  of the cultured bacteria (containing approximately 1 to  $2 \times 10^8 \, CFU/cm^3$ ), mixed and incubated at  $37^{\circ}$ C for 24 h. Growth inhibition with concentrations at  $156 \,\mu g/cm^3$  or lower were carried out in duplicates. All test tubes showing positive/ negative growth were confirmed by the agar plate method. The results were recorded according to presence and absence of growth. The *MICs* were calculated as the average concentration of the test agent in the broth tubes showing consecutive positive and negative growth.

### Methyl 4-chloro-3,5-dinitrobenzoate (13)

Thionyl chloride (10 cm<sup>3</sup>) was added dropwise to a stirred and cooled (0°C) solution of 4.9 g 4-chloro-3,5-dinitrobenzoic acid (20 mmol) in absolute *Me*OH (100 cm<sup>3</sup>). The resulting mixture was then heated at reflux for 2 h. Thereafter, the solvent was distilled off, and the residual solid product was recrystallized from petrolum ether (bp 60–80°C). Yield 4.6 g (88%); mp 105–106°C (Ref. [12] 102–103°C); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 4.03 (s, CO<sub>2</sub>CH<sub>3</sub>), 8.61 (s, H-2 + H-6) ppm; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  = 53.6 (OCH<sub>3</sub>), 124.8 (C-4), 128.2 (C-2 + C-6), 130.9 (C-1), 149.7 (C-3 + C-5), 162.4 (C=O) ppm.

#### 3-(4-Methoxycarbonyl-2,6-dinitrophenyl)indole (10, C<sub>16</sub>H<sub>11</sub>N<sub>3</sub>O<sub>6</sub>)

A solution of  $8 \text{ cm}^3 \text{ CH}_3\text{MgI}$  in ether (3.0 *M*) was added to a solution of 2.3 g indole (20 mmol) in 40 cm<sup>3</sup> anhydrous ether and stirred at room temp for 20 min. To this mixture  $24 \text{ cm}^3$  of a solution

of anhydrous ZnCl<sub>2</sub> in dry ether (1.0*M*) were added and stirred at room temp for 30 min. Thereafter, 2.6 g **13** (10 mmol) were added to the reaction mixture, which was further stirred at room temp for 4 h. The resulting mixture was then treated with 100 cm<sup>3</sup> H<sub>2</sub>O and stirred for 15 min. The ether layer was separated and the aqueous layer was extracted with ether ( $3 \times 50$  cm<sup>3</sup>). The combined ethereal portions were dried (Na<sub>2</sub>SO<sub>4</sub>), and the solvent was evaporated. The residual solid product was collected and recrystallized from CHCl<sub>3</sub>/petroleum ether (bp 60–80°C) to afford **10** as yellow solid. Yield 1.6 g, (47%); mp 196–197°C; MS-EI: *m/z* (%) = 341 (M<sup>+</sup>, 100), 310 (8), 295 (16), 266 (7), 235 (12), 206 (18), 179 (20), 151 (13), 119 (9), 95 (23); HRMS: calcd for M<sup>+</sup> 341.0647, found 341.06554; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 4.04 (s, CH<sub>3</sub>), 7.16 (dd, *J* = 7.0, 7.5 Hz, H-5), 7.23 (d, *J* = 7.0 Hz, H-4), 7.27 (dd, *J* = 7.5, 8.2 Hz, H-6), 7.40 (d, *J* = 2.8 Hz, H-2), 7.42 (d, *J* = 8.2 Hz, H-7), 8.54 (br s, N-H), 8.59 (s, H-3' + H-5') ppm; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  = 53.4 (OCH<sub>3</sub>), 104.9 (C-3), 111.9 (C-7), 118.1 (C-4), 121.5 (C-5), 123.6 (C-6), 124.8 (C-2), 125.8 (C-3a), 127.0 (C-3' + C-5'), 127.5 (C-1'), 130.7 (C-4'), 151.8 (C-2' + C-6'), 163.2 (C=O) ppm.

#### 3-(2,6-Diamino-4-methoxycarbonylphenyl)indole (11, C<sub>16</sub>H<sub>15</sub>N<sub>3</sub>O<sub>2</sub>)

Sodium borohydride (1.9 g, 40 mmol) was added portionwise to a stirred solution of 1.65 g **10** (5 mmol) in 60 cm<sup>3</sup> *Me*OH at room temp and mixed with 20 cm<sup>3</sup> of a saturated aqueous solution of copper acetate, whereby the reduction was completed within 4–6 h. The resulting mixture was then treated with 100 cm<sup>3</sup> ether and washed with 10% aqueous Na<sub>2</sub>CO<sub>3</sub> solution. The ether layer was separated, and the aqueous layer was extracted with diethyl ether (2×40 cm<sup>3</sup>). The combined ether fractions were dried (Na<sub>2</sub>SO<sub>4</sub>), and the solvent was then removed. The residual solid product was collected and recrystallized from CH<sub>2</sub>Cl<sub>2</sub>/petroleum ether (bp 40–60°C) to afford bright red needles. Yield 1.1 g (76%); mp 192–193°C; MS-EI: *m/z* (%) = 281(M<sup>+</sup>, 100), 250 (7), 222 (14), 205 (7), 193 (3), 166 (13), 149 (10), 125 (8), 111 (28), 97 (18); HRMS: calcd for M<sup>+</sup> 281.116405, found 281.118015; <sup>1</sup>H NMR (300 MHz, *DMSO*-d<sub>6</sub>):  $\delta$  = 3.79 (s, *OCH*<sub>3</sub>), 4.49 (br s, 2NH<sub>2</sub>), 6.69 (s, H-3' + H-5'), 6.98 (dd, *J* = 7.3, 7.7 Hz, H-5), 7.13 (dd, *J* = 7.3, 7.8 Hz, H-6), 7.17 (d, *J* = 7.7 Hz, H-4), 7.37 (br d, *J* = 2.0 Hz, H-2), 7.45 (d, *J* = 7.8 Hz, H-7), 11.37 (br s, N–H) ppm; <sup>13</sup>C NMR (75 MHz, *DMSO*-d<sub>6</sub>):  $\delta$  = 52.1 (OCH<sub>3</sub>), 104.4 (C-3'/C-5'), 107.9 (C-3), 109.4 (C-1'), 112.3 (C-7), 119.3 (C-4), 119.8 (C-5), 121.9 (C-6), 125.5 (C-2), 126.1 (C-3a), 129.4 (C-4'), 137.2 (C-7a), 147.9 (C-2'/C-6'), 167.7 (C=O) ppm.

#### 3-(2-Amino-4-trifluoromethyl-6-nitrophenyl)indole (9, C<sub>15</sub>H<sub>10</sub>F<sub>3</sub>N<sub>3</sub>O<sub>2</sub>)

An aqueous solution of sodium polysulfide was freshly prepared according to Ref. [9]: A solution of 2.7 g crystalline Na<sub>2</sub>S·9H<sub>2</sub>O (11 mmol) in 10 cm<sup>3</sup> H<sub>2</sub>O was treated with 0.65 g finely powdered  $S_8$  (20 mmol) and warmed until a clear solution was produced. A stirred mixture of 3.5 g 7 [7] (10 mmol),  $15 \text{ cm}^3 \text{ H}_2\text{O}$ , and  $10 \text{ cm}^3 \text{ EtOH}$  was brought to gentle boiling in a beaker. To this solution was dropwise added the freshly prepared aqueous solution of  $Na_2S_x nH_2O$ , and the resulting reaction mixture was vigorously stirred and boiled for further 20 min. The resultant mixture was cooled, filtered, and the filtrate was acidified with 13 cm<sup>3</sup> 20% aqueous HCl and boiled for 15 min. The reaction mixture was filtered, cooled, and basified with an excess of 25% aqueous NH<sub>3</sub>. The precipitated solid was collected and recrystallized from aqueous EtOH in the form of fine orange needles. Yield 2.3 g (72%); mp 243–245°C; MS-EI: m/z (%) = 321 (M<sup>+</sup>, 100), 304 (23), 302 (6), 275 (49), 274 (56), 247 (25), 226 (5), 206 (18), 178 (5), 152 (7), 137 (11), 127 (7), 113 (6), 103 (7); HRMS: calcd for M<sup>+</sup> 321.072479, found 321.075226; <sup>1</sup>H NMR (300 MHz,  $DMSO-d_6$ ):  $\delta = 4.33$  (br s, NH<sub>2</sub>); 6.59 (dd, J = 7.6, 7.8 Hz, H-5), 6.66 (d, J = 7.8 Hz, H-4), 7.02 (m, H-6 + H-7), 7.92 (br d, J = 2.0 Hz, H-2), 8.01 (br s, H-3'), 8.18 (br s, H-5'), 12.51 (br s, N<sub>1</sub>-H) ppm; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta = 112.9$  (q, <sup>3</sup> $J_{C-F} = 3.7$  Hz, C-3'), 114.0 (C-3), 114.7 (C-7), 114.8 (q,  ${}^{3}J_{C-F} = 3.8 \text{ Hz}, \text{ C-5'}$ , 116.3 (C-4), 119.8 (C-1'), 120.5 (C-3a), 120.7 (q,  ${}^{2}J_{C-F} = 34 \text{ Hz}, \text{ C-4'}$ ), 124.8 (q, <sup>1</sup>*J*<sub>C-F</sub> = 254 Hz, *C*F<sub>3</sub>), 128.0 (C-5), 129.9 (C-6), 133.7 (C-2), 136.8 (C-7a), 143.1 (C-2'), 147.4 (C-6') ppm.

### Acknowledgements

We are grateful to Internationales Büro of BMBF, Forschungszentrum Jülich (Bonn, Germany) and to the Deanship of Scientific Research, Jordan University (Amman, Jordan) for financial support.

# References

- Chadwick DJ (1987) Comprehensive Heterocyclic Chemistry. In: Katritzky AR, Rees CW, Bird CW, Cheeseman GWH (eds) vol 3. Pergamon Press, Oxford
- [2] Ayer WA, Craw PA, Ma Y-T, Mialo S (1992) Tetrahedron 48: 2919; Moody CJ, Roffey JRA, Stephens MA, Stratford IJ (1997) Anti-Cancer Drugs 8: 489
- [3] Lakhan R, Ternai B (1974) Advances in Heterocyclic Chemistry 17: 99–211; Katritzky AR, Boulton AJ (eds), Academic Press, New York
- [4] Moosa BA, Abu Safieh KA, El-Abadelah MM (2002) Heterocycles 57: 1831
- [5] Abu Safieh KA, El-Abadelah MM, Abu Zarga MH, Sabri SS, Voelter W, Moessmer CM (2001) J Heterocycl Chem 38: 623
- [6] Dabaien SA, El-Abadelah MM, Haddad SF, Duddeck H (2005) Heterocycles 65 (submitted)
- [7] Al-Khashashneh AM, El-Abadelah MM, Boese R (2003) Heterocycles 60: 73
- [8] Fasfous II, El-Abadelah MM, Sabri SS (2002) J Heterocycl Chem 39: 225
- [9] Furniss BS, Hannaford AJ, Rogers V, Smith PWG, Tatchell AR (1978) In: "Vogel's Textbook of Practical Organic Chemistry". 4th ed, Longman, London
- [10] For the preparation of N-indolylmetal salts and their utilization in the synthesis of 3-(heteroaryl)indoles, see: Heacock RA, Kăspárek S "Advances in Heterocyclic Chemistry: The Indole Grignard Reagents" 10: 43–112; Katritzky AR, Boulton AJ (eds), Academic Press, New York (1969); Bergman J, Venemalm L (1990) Tetrahedron 46: 6061
- [11] Cowan JA (1986) Tetrahedron Lett 27: 1205; Patel HV, Vyas KA, Pandey SP, Fernandes PS (1995) Organic Preparations and Procedures Int 27: 81
- [12] Nielsen AT, Norris WP, Atkins RL, Vuono WR (1983) J Org Chem 48: 1056